Autonomic Microgrids ?

Professor Phil Taylor Siemens Professor of Energy Systems Director of the EPSRC National Centre for Energy Systems Integration

Niagara 2016 Symposium on Microgrids 20 – 21st October 2016 Niagara on the Lake, Ontario

Overview

- Autonomic Microgrids and Self* Operation
- Technical Zoning
- Algorithm Selection
- Market Zoning
- Self Organising Architectures and Cyber Security
- National Centre for Energy Systems
 Integration

Drivers

TIMELINE

DRIVERS

Durham Imperial College

Overarching Research Question

Can a fully distributed intelligence and control philosophy deliver the future flexible grids required to facilitate the low carbon transition, allow for the adoption of emerging gamechanging network technologies and cope with the accompanying increase in uncertainty and complexity?

ial College

Self* Network Operation and Control Schematic

Durham Imperial College

II. How to zone ? –(a)

- Spectral Clustering (SKC)
- Fuzzy Clustering (FCM)

Subfig.3 SKC methodology

Subfig.4 FCM methodology

II. How to zone? –(b)

Robustness of a zoning decision

-testing the effect of uncertainty on the measurements (e.g. imperfect prediction, noisy or corrupted data)

III. Static vs. adaptive zoning.

Questioning the feasibility.

- Fast enough (<1 min) for large scale network (e.g. 2383 buses test network) ?
- Availability of measurement and telecommunication infrastructure ?

Questioning the value.

 Performance enhancement vs. reconfiguration threshold

Network states

Potential to provide **better performance** by **selecting algorithms for each state**, instead of using **one algorithm for all states**

Building Algorithm Selectors

- Create an **algorithm selector** to exploit link between network state and algorithm performance
- Use machine learning to create the selector

Building Algorithm Selectors

- Creation of algorithm selectors already established in computer science applications
- Two main types:

Application: Power Flow Management

- Additional Distributed Generators (DGs) can cause overloaded network branches
- Power Flow Management:
 - Active approach (Active Network Management)
 - Control DG outputs to mitigate overloads
- Ideally: minimise overloads while minimising
 DG curtailment

Application: Power Flow Management

Application: Power Flow Management

• Example: IEEE 57-bus system, 10,000 states

Algorithm / Selector	No. of overloads (count)	Curtailed energy (MWh)
Best Individual Algorithm (OPF)	1367	749,900
Best Direct Selector	771	900,734
Best EPM-based Selector	772	926,646
Optimal Selections	768	821,087

Algorithm selection reduces the number of overloads

Economical and Technical Layers

Durham University London

University of Sussex

Interaction between the two Layers

An example – initial zoning

- 11 bidders participating in the auction – six demands (D1-D6) and five suppliers (S1-S5).
- Overall demand in Control zone A is 12.5 MW and 10 MW in Control zone B.

Offers and bids in zone A

Demand	MW	Cost (pence/MW)
Demand 1	5	120
Demand 2	2.5	100
Demand 3	5	90
Suppliers	MW	Cost (pence/MW)
Supplier 1	2.5	140
Supplier 2	5	130
Supplier 3	7.5	130
Supplier 4	12.5	90
Supplier 4	2.5	80

Using a two-sided uniform-price auction, Supplier 4 delivers 12.5 MW to Demands 1, 2 and 3 at a price of 90 pence. Before using the flexible zoning structure, the cost in Economic zone A alone would be 1125 pence (12.5 MW*90 pence).

Offers and bids in zone B Initial zoning

Demand	MW	Cost (pence/MW)
Demand 4	5	80
Demand 5	2.5	50
Demand 6	2.5	40
Suppliers	MW	Cost (pence/MW)
Supplier 5	12.5	50
Supplier 5	10	40
Supplier 5	10	40

Again, using a two-sided uniform-price auction Supplier 5 delivers 10 MW to Demands 4, 5 and 6 at a price of 40 pence. At this price, the energy cost in Economic zone B alone would be 400 pence (10 MW*40 pence). Together with Economic zone A, <u>total energy cost would be 1525 pence.</u>

Suggestion 1 – lowest overall cost

Zones	MW	Cost (pence/MW)
Economic Zone A (new zone)		
Demand 1	5	120
Demand 3	5	90
Demand 5	2.5	50
Supplier 5	12.5	50
Economic Zone B (new zone)		
Demand 2	2.5	100
Demand 4	5	80
Demand 6	2.5	40
Supplier 5	10	40
Total cost		1025

<u>12.5*50+10*40 = 625+400= 1025 pence.</u>

Suggestion 2 – second-lowest overall cost (If Suggestion 1 is not technically feasible)

Zones	MW	Cost (pence/MW)
Economic Zone A (new zone)		
Demand 1	5	120
Demand 2	2.5	100
Demand 4	5	80
Supplier 4	2.5	80
Supplier 5	10	40
Economic Zone B (new zone)		
Demand 3	5	90
Demand 5	2.5	50
Demand 6	2.5	40
Supplier 5	10	40
Total cost		1400

12.5*80+10*40 = 1000+400 = 1400 pence.

Decision

- The Technical Layer rejects Economic Layer Suggestion 1.
- Economic Layer Suggestion 2 is feasible. Suggestion 2 is accepted by Technical Layer but is an improvement on initial suggestion.

(b) Suggestion 2

(a) Suggestion 1

Fig. 5 Suggested zones after re-configuration

Self-Organising Architectures

- An Agent based architecture
- Self-Organising properties to respond to attacks
- Operates in three stages
 - Initialisation
 - Performance Monitoring
 - Decision Making and reconfiguration
- Fuzzy based Decision making engine
- Interfaces with Matpower for load flow calculation

Network Configuration

- **340** Customers with profiles
- 4 PV Generators with profiles

- 4 Active Aggregates (4 Dormant)
- 4 Central Core Agents

Attack Strategies

- All attacks are based on low-rate Denial of Service attacks
- Selected customer agents act as the attackers
- Aggregate Agents as controllers are the targets
- Two levels of attacker sophistication
 - Static: Low level of sophistication, attacker selects a fixed target
 - Adaptive: An escalated state, attack traffic redirects after an architecture transition

29 Combinations of Attack Strategy, Intensity and Sophistication

- Burst Attack: Attack traffic transmitted for 250 seconds
- Continuous Attack: Attack traffic transmitted once triggered until the end of the simulation
- Sequential Attack: Two Burst instances at critical stages of the control process
 Attacks timed to coincide with voltage control signals

Responding to an attack

- The architect is informed the impact on performance metrics.
- All metrics are combined to form a value for Computational Burden.
- A fuzzy based decision making engine monitors the burden and its rate of change.
- If necessary architectural transitions are initiated to redistribute connections, replace agents or increase aggregate capacity
- Aiming to improve control performance through easing load on the communication network

Geology

Mathematics

Computer Science

Website : Twitter : Email :

research.ncl.ac.uk/cesi

: @cesienergy

il : cesi@ncl.ac.uk

Urban Microgrid in Newcastle

Thermal Storage Heat and Cool Network

Conclusions

- Autonomic Microgrids and Self* promising
 Dynamic Zones, Algorithm Selection
- Multiple Microgrids ?
- Decentralised Markets
- Cyber Security needs more work
 - Model the attackers
- Multi Vector Microgrids

